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AN ADAPTIVE RANDOM-SEARCH ALGORITHM FOR IMPLEMENTATION
OF THE MAXIMUM PRINCIPLE

By Elwood C. Stewart, William P. Kavanaugh,
and David H. Brocker

Ames Research Center

SUMMARY

In this paper a feasible method of implementing the Maximum Principle is
given which can be used to generate explicit optimal solutions to complex non-
linear control problems. The method is based on an adaptive random-search
algorithm that utilizes direct measurements of hypersurfaces, the analytic
forms of which are unknown, to solve a two-point boundary-value problem. The
purpose of the search is to locate a set of parameters that correspond to the
minimum of the hypersurfaces. The method has a much wider scope of applica-
bility than to the two-point boundary-value problem to which this paper is
addressed. No restrictions are placed on the continuity of the surfaces or
on the number of maxima or minima. The adaptation enhances convergence by
varying the mean and variance of a probability distribution as a function of
past performance. The algorithm has local and global search properties so
that '"hanging up" on local minima or maxima is avoided.

A hybrid computer implementation of the algorithm is discussed, which
treats both fixed- and free-time problems. The usefulness of the algorithm is
investigated experimentally for a fixed-time fifth-order nonlinear minimum-
fuel orbit-transfer problem and for a free-time, sixth-order, nonlinear
minimum-fuel satellite acquisition problem. Solutions are obtained for these
problems in a wide variety of situations, and system performance in some of
these situations improved remarkably. This is directly attributable to the
computational method of this paper, which permits one to investigate nonlinear
problems in a manner heretofore unattainable. Convergence is generally
obtained within several thousand iterations (one to two minutes). Details are
given on the manner in which the system iterates, on typical solutions that
were obtained for a wide range of situations, and the convergence properties
of several variations of the basic algorithm. Cross sections through the
boundary hypersurfaces reveal the striking irregularities that high-order
systems can have; it has been demonstrated that the adaptive random-search
approach is effective in coping with these irregularities.

INTRODUCTION

The Pontryagin Maximum Principle is an exceedingly elegant and powerful
theory for determining the optimal control of dynamic systems describable by
nonlinear differential equations with bounded control. Although there has
been a flurry of activity for several years in its application to low-order



systems, there have been few applications to high-order systems. For
high-order systems the Maximum Principle yields much information about the
nature of the solution, but the actual solution is generally difficult to
obtain. The reason for this is that a difficult, mixed boundary-value problem
is "invariably encountered, one in which the known boundary conditions are
divided between initial and terminal values. Furthermore, the mapping from
the initial to terminal boundary values is not generally explicitly known. An
equivalent formulation may be employed to transform the mixed boundary-value
problem to an initial-value problem by constructing this mapping with the aid
of computers. Then the problem can be interpreted as one of determining the
set of initial conditions that correspond to a minimum of a hypersurface, this
minimum value being known a priori.

One possible approach to the above problem is based on some form of the
gradient method. However, there are several disadvantages in this approach:
(1) only local properties are utilized, (2) only one local minimum is
implicitly assumed, and (3) the gradient is not usually analytically available.
These difficulties lead to convergence problems as shown in reference 1. Thus,
the approach is of limited value when the surface being studied is multipeaked,
discontinuous, or very flat in certain regions. Random-search methods seem
promising in overcoming some of the above deficiencies. References 2-4 give
good general discussions of the merits of random techniques. Such methods
have been used mostly in connection with direct-search problems (refs. 5
and 6). However, in a recent study (ref. 7), a fixed-step, random-sign-type
search was used to implement the Maximum Principle, and application was made
to linear second- and third-order systems.

A more general approach will be discussed in this paper based on an
adaptive random-search method for solving the two-point boundary-value problem
involved in the Maximum Principle. The random search has both local and
global properties and the method does not depend on the continuity of the sur-
face being searched or the number of minima, and does not require that an ana-
lytical expression for the surface be known. The method, which is based on
two previous studies (refs. 8 and 9), permits the much larger class of
free-time problems to be treated.

It is worth noting that the adaptive random-search method has wider
applicability than merely solving problems that result from application of the
Maximum Principle and its associated boundary-value problem. That is, the
same method could be useful in the more general problem of determining the
minimum of an arbitrary hypersurface; much literature is concerned with this

more general problem.

Although the approach described in this paper is closely related to such
studies, there are significant differences. First, a fairly general set of
heuristics is implemented in the present study to enable an accurate but com-
plex model of the problem to be solved. This contrasts with other approaches
in which heuristics are used to reduce the problem to a size more suitable to
more rigorous mathematical analysis; the latter approach tends to oversim-
plify the true nature of the surface. A second difference is that general
global minimization problems usually require complex and somewhat arbitrary



stopping rules. In the problem presented in this paper, the stopping rule is
simple and precise because the minimum value of the surface is known by con-
struction. Finally, the technique of implementation assumes a more prominent
position in this study than in the more general studies because the method is
dependent on new advances in computer capabilities.

In the sections to follow, the adaptive random-search algorithm for both
the fixed-time and free-time situations are described, the respective hybrid
computer realizations are discussed, and applications of the method to a
fixed-time, fifth-order, nonlinear orbit-transfer problem and to a free-time,
sixth-order, nonlinear satellite attitude acquisition problem are presented.

PROBLEM FORMULATION

Although the adaptive random-search method to be discussed in this paper
is applicable to a wide range of engineering problems, attention will center
on those problems to which the Maximum Principle is applicable. Familiarity
with the Maximum Principle is assumed (refs. 5, 6, 7). Thus, we will not
review the derivation, the theorems, the assumptions involved, or the
boundary-value theory. For purposes of notation, a few remarks are appropri-
ate, however.

The system to be controlled is defined by the vector differential
equation

x = f(x,u,t) (1
where the state vector is x = {(x1,X2, . . .,Xp), the control vector is
u = (uy,up, . . .,up), £ 1is a vector function, f = (f3,f,, . . .,fy), and

ueU, the allowable control region. Discussion will center on fixed-time
problems because of the convenience in presentation; however, free-time prob-
lems will be included, and example problems given for each situation. It is
desired to take the system from a given state x(0) to a final target set S
so as to minimize the generalized cost function

n
1=0

where xg(t) is the auxiliary state associated with the quantity to be mini-
mized (ref. 7). Some of the possible target sets are: (a) SeR,, (b) S C Ry,
and (c) S = xfeRp, corresponding to a free point, a subset of the whole

space Ry, and a fixed point.

The application of the Maximum Principle to the stated problem invari-
ably requires the solution to the set of equations:



X = f(x,u,t)
p = g(p,x,u,t) (3)
u = u(x,p)

subject to certain boundary conditions, and, where p is the adjoint vector,
P = (p,sPys - - +sPp)-

Although the above set of equations obtained from the Maximum Principle
contain a good deal of information about the nature of the optimum control,
it is generally difficult to obtain an explicit solution that satisfies the
desired boundary conditions; that is, we know the control function u(x,p) and
the equations for x and p, but at no time do we know the specific values of
both x and p. For example, at the initial time, x(0) is generally known
from the problem specifications, whereas p(0) is not known. The boundary
conditions remaining at the end time will be determined in part by the speci-
fied target set and in part by the transversality condition. Thus, there is
difficulty in solving these equations even numerically, because the known
boundary conditions are split between initial and final times.

THE ADAPTIVE RANDOM-SEARCH ALGORITHM

The general approach used here is based on an adaptive random-search
procedure and it obtains explicit solutions for problems to which the Maximum
Principle has been applied. To describe the approach it is expedient to dis-
cuss (1) the basic search algorithm for fixed-time problems; (2) the changes
required for free-time problems; and (3) the adaptive characteristics of the

algorithm.

Nonadaptive Random-Search Algorithm for Fixed Time

In this section fixed-time problems in which the system is either
autonomous or nonautonomous will be treated. A hybrid computer diagram of
the algorithm is illustrated in figure 1. The left half of the figure, indi-
cated by analog computation, is an implementation of the set of equations (3).
The right half, indicated by digital computation, is an implementation of
those operations that are best done digitally in order to satisfy the boundary
conditions involved in the Maximum Principle.

Let us discuss the algorithm in detail. The basic notion in the random-
search algorithm is to select the initial condition vector for the adjoint
equations from a noise source, which has in this case a gaussian distribution
with (for purposes of the immediate discussion) fixed mean m and fixed
standard deviation o. Conceptually, as indicated in the figure, the mean and
standard deviations can be separated by adding the m to the output of a
gaussian noise source with standard deviation o and zero mean. Thus on any
kth iteration, the vector pk is




pk =K + £K (4)

The gaussian noise source generates a purely random, n-dimensional vector
sequence {£K} with zero mean and independent components:

m = E(gK) =0 (5)
i rky = ~ ~2
cov(g),£*) =Q =0 ij (6)
where ¢§& = (El,éz, .o .,gn), and ij is the Kronecker delta.

Continuing around the loop in figure 1, the value of pk as determined
by equation (4) becomes p(0), the initial condition for the adjoint equation.
Since the value of p(0) together with the given x(0) is sufficient to define
a solution of the set (3), these equations represented by the left half of
figure 1 can be integrated to the terminal time T. The final state xk(T)
actually achieved generally fails to satisfy the desired terminal state as
defined by the target set. Similarly, the final values of the adjoint vari-
ables pX(T) fail to satisfy the boundary conditions required by transversality.
For this reason a function to measure the difference between the actual bound-
ary values and the desired boundary values is introduced herein. The defi-
ciencies pointed out in reference 13 of the scalar-valued metric will be
avoided. Instead, systems will be partially ordered by a vector-valued metric.
Generally, three distinct types of conditions will be satisfied at the terminal
time, that due to the displacement components of x(T), that due to the veloc-
ity components of x(T), and that due to the transversality relation. Hence,
the vector metric will be taken to be of the form

J = Jp,Jdy,Jp) (7)

where the components refer to displacement, velocity, and transversality
(adjoint variables p) errors, respectively. For two systems Z and Z' we
will say Z > Z' if and only if J > J'; that is, Jp > Jp', Jy > Jy', and
Jp > Jp'. With this concept one is concerned with choosing from a certain
set of systems a noninferior system rather than an optimum system. This con-
cept corresponds more closely with a realistic objective as pointed out in
reference 13.

Assume now that the search is purely random with no adaptive character-
istics. In this case the dashed lines in figure 1 would be absent. Then as
a result of the random vector sequence {Ek}, the vector sequence {Jk} is
generated. Since the search is purely random, the algorithm logic decides at
each iteration whether the value of J has been reduced to zero.

Satisfying the boundary conditions is slightly more involved than the
above because in an experimental study it is not likely that the boundary con-
ditions for x and p will ever be precisely achieved; that is, J will never
be exactly zero. For this reason we will enlarge the target set by some small
amount and allow the system to terminate at any point in the enlarged set.
This view is more realistic, since there is no reason to demand that a practi-
cal system satisfy the boundary condition exactly. To accomplish this in the
random-search method, we will require



J < g (8)
where
€ = (SD,Ev,Ep)

The values of e and ey are dictated by how closely it is desired that the
system states approach the desired target set. The value of ep 1is more
difficult to choose because of its lack of physical interpretation. Fortu-
nately, the hybrid computer approach makes it easy to choose a sufficiently
small value by experimentally observing the sensitivity of the solutions to
small changes in ep. In an experimental study to be described later, the
solutions were quite insensitive to variations in ep over a wide range.

Nonadaptive Random-Search Algorithm for Free Time

In the free-time problem one is interested in minimizing system perfor-
mance at some time within an arbitrary interval of time [0,T]. (Note that we
use the same symbol T that we used in the fixed-time case but the meaning
is slightly changed.) There are two essential differences between the fixed-
time and the free-time problems that must be accounted for in the algorithm
as will now be discussed.

The first change in the algorithm required for free-time problems is the
introduction of a suitable metric JkK on which to base the iterations. We
will take JK to be defined by the following equation:

Jk = [min J(t)]k
t
where tp is the value of t at which the minimum occurs on the kth
iteration. By way of comparison, in the fixed-time case the JK used in the
algorithm was taken to be J(T) (i.e., the boundary-value error, computed
from the state and adjoint variables at the fixed time T). 1In the free-time
solution, however, we require J(t) to be computed continuously over the
interval [0,T] and its minimum value to be determined. These required
changes in implementation are indicated in figure 2 by the metric computation
block. The minimum operation in equation (9) is implemented via an analog
circuit that "remembers' the minimum value of J(t), designated in equa-
tion (9) by J(typ), on the interval [0,T] for each kth trial. Then at time
T, on the kth trial, this value of J(ty) is read by the digital machine
and is stored as JK. Note that when a solution is obtained, tp on that
trial becomes the a priori unknown solution time, tyg.

[J(tm)]k 0<t<T (9)

A second change required in the algorithm for free-time problems depends
on the nature of the system to be controlled. For autonomous systems the
theory requires the additional condition that the Hamiltonian H = (p,f) be
identically zero over the interval [0,T]. This can be done by generating
n - 1 elements of the n-dimensional vector p(0) randomly, and computing the
remaining element to satisfy the requirement that H = 0. The required
change in implementation is indicated in figure 2. The necessary computa-
tions are simple: they can always be accomplished by the solution of a

6
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linear algebraic equation as long as we are confined to problems of mechanics.
The reason is that there will always be some of the state differential equa-
tions in which the control does not appear so that the Hamiltonian will be
linear in the corresponding adjoint variables. Imposing H = 0 at the
initial time is sufficient since the theory ensures that H is constant
throughout the interval.

Nonautonomous systems require a slightly different change in the
algorithm. A certain constraint must be satisfied on the Hamiltonian at the
final time, and this constraint could be implemented by including it as an
added component of the vector metric. Since no applications of this type
were considered, we will not discuss this case further.

It is now clear that with the exception of minor changes, the iterative
procedure is identical for the free-time and fixed-time problems. Similarly,
the adaptive aspects of the search algorithm to be discussed in the next
section apply to both problems.

The Adaptive Random-Search Algorithm for Fixed and Free Time

The pure random search described in the preceding sections is generally
unsatisfactory because of the excessively long convergence times, as will be
seen in a later example. The convergence properties can be improved by
making the system adaptive; the adaptive properties are achieved by varying
the mean m and standard deviation o as a function of the system's past
performance. Since performance is determined by the input and output
sequences {£K} and {JK}, we will make the mean and standard deviation
adaptive of the form

k+1
m

erleet g2 ek go gt L 00

k+1 (10)

o ekeleelg2, ek, 00,01, L L L0k

A fundamental notion in the algorithm will be that of a "success" or "failure"
defined by a function of the cost JK on the kth iteration and the smallest
preceding cost J! obtained on the last successful iteration (the Zth
iteration). The most frequently used definitions were

success: JZ,— JKk > 0

(11)
failure: JZ - gk 0

Obviously a successful iteration is both necessary and sufficient for the
system to be noninferior. Practical limitations made it necessary to modify
the statement of equation (11) as follows. By definition, each component of
JL is a monotonic decreasing function of the number of iterations. Since it
is possible that some components of Jt may be reduced to small values
approaching the resolution of the computer while other components remain
large, further reduction as defined by equation (11) would be impossible.
Thus the remaining large components could not be made less than their respec-
tive € values. This situation was observed to occur quite regularly. To



avoid it we will not require for a ''success" a further reduction of those
components of JL  that are already equal to or less than their respective e
values. An exact statement of this concept results in a complex Boolean
statement to be described later.

Implementation of the adaptive part of the algorithm is illustrated in
figure 1 by the dotted lines and the algorithm logic block. The algorithm
logic block performs the computations in the above equations by utilizing:
(1) the pk information from the memory M,, and (2) the system performance
information JK from the memory M;. The output of the algorithm logic
block is then the mean and standard deviation of the distribution for the

next iteration as indicated.

The rationale behind the particular adaptive law to be used here is
based on the notion of a creeping, expanding, and contracting search. The
creeping character of the search is provided by varying the mean of the dis-
tribution so as to equal the initial condition of the adjoint vector on the
last successful iteration. The expansion and contraction character of the
search is provided by varying the standard deviation such that the search is
localized when successful but gradually expanded when not successful. These
characteristics give the algorithm some useful search properties.

The adaptive law for the mean value of the distribution was taken to be:

Xy  if Jgk < gt
mK+1l = (12)
mk if Jk ¢ gt
where the initial values are m! = 0, and J° is the value based on the

initial values x(0). That this law is of the form of equation (10) can be
seen when equations (4) and (12) are combined sequentially. Thus, the first
few terms of the sequence are

1

mt =0
gl if Jl < Jgo

m? = L o T 00

: 0 if JP £ J

(El + EZ if J2 < Jl < JO 3
gl if J2 £ Jl < g°

m3 =4 v = £ 3(gl 82,309,531 02 (13)
g2 if Jgt ¢ Jgo, g2 < jo n o
L0 if J2, gt ¢ J°

The adaptive law for the standard deviation o of the distribution was
chosen so as to expand or contract the size of the search, depending on




performance. Let J. be the metric obtained on the last successful itera-
tion. Then the law for the standard deviation following the unsuccessful
kth iteration is

(5, if Jk ¢ Jt ¥k: L<k<l=+gq N
o, if Jk g Jl ¥k: 1 +q<k<l+2q
o3 if Jk ¢ gt ¥k: 1 +2q<k<1+3q

Sk+1 =< ' _ & (14)

+

o, if Kgob w2 (v - Da<k<l+vyq
where o3 are constants such that oy <o, < . . . <o,. If, as a result of
any kth trial, JK < Jl, then we set the index 7 = k and repeat the above
variance sequence. In other words, immediately following a success, o; 1is
used for the next q iterations, o, for the following q iterations, and
so on, until a success is obtained. These equations are a simple form of
equations (10). Occasionally, depending on the difficulty of the particular
problem being studied, no success will be achieved in the vyq iterations.
For this reason, we repeat the search in equations (14) a number of times C
(usually twice), and then reinitialize the entire search if no success is
achieved. Available parameters are ¢, Y, and the o;. In the example to be
discussed later, values of q = 100 and vy = 10 were chosen, but they do not
seem critical. The choice of ¢ values is more important because it affects
the range of the search; however, it is not difficult to choose reasonable
values. A reasonable lowest value, o;, can be determined by observing on the
display system (yet to be described) the metric J on every iteration, and
choosing a value small enough that the value of J varies only slightly.

For the orbit-transfer problem discussed later, o; = 0.1 V proved satisfac-
tory. The upper value is chosen to cover some sizable portion of the entire
space; a value of 10 V seems reasonable for the 100 V space available on the
analog computer that was used. In between, the steps are in a geometric pro-
gression enabling the search to expand rapidly. The sequence (03,02, . . .,
oy) will be called the normal sequence, and the algorithm using this sequence
will be referred to as the normal strategy. (A second sequence and strategy
will also be required, as discussed later.)

Several additional strategies were incorporated into the algorithm to
provide better convergence properties and greater versatility in certain
situations. They are:

1. Single-step strategy. This strategy is intended to take advantage
of favorable local properties of the surface. It is based on the idea that
the step following a successful step k should not be random but determin-

istic in the same direction and of the same amount. That is, pk+l is
defined by



pk+1 - mk+1 +l£k if JZ - Jk > 0 (15)

The cost in time, one iteration, is insignificant, and the benefits are
substantial, as will be seen in a later example.

2. Threshold strategy. In this strategy, the requirement for a success
is modified so that the difference between the cost for the kth iteration
and that for the last successful iteration (i.e., the left side of eqs. (11))
must exceed some threshold value dependent on the cost function. We take the
case in which the threshold is simply nJZ where 0 < n < 1. Thus, a
success is defined by

gt - gk 5> nt (16)

This strategy has the desirable characteristic that smaller improvements are
required as the minimum is approached.

3. Localized end-search strategy. This end-search strategy is intended
to localize the search when in the immediate neighborhood of the minimum.
Thus, we effect a greater resolution in searching the immediate neighborhood
of the p 1(0) that produced JL when JU itself is in the neighborhood of a
solution. This is done simply by reducing the specific values of (o1, . . .,
o.) chosen for the normal strategy by a constant factor o, where 0 < a < 1.
More precisely, when Jl < §, where 8 is some small value on the order of
2¢, o will vary over the variance sequence, but the specific values of the
sequence will be a fixed fraction, o, of the values of the sequence for the
normal strategy. The algorithm using this end-search sequence will be
referred to as the 'end-search strategy." This strategy was suggested by
experimental evidence indicating a certain sensitiveness of J to p(0) in
the neighborhood of a solution; it was used sparingly, however, since it was
beneficial in reducing convergence time only under certain conditions.
Although a gradient method could be used in this final phase, the random-
search method accomplishes the same objective without an implementation

change.

4, 1Initial-search strategy. Since no a priori information is available
that will assist in making a suitable first guess of p(0), it would seem
natural to assign an equal probability to all the values p(0) might assume.
For this reason, values of p(0) are selected from a uniform distribution
until a success is achieved. When this occurs, the succeeding selections of
p(0) are made from the gaussian distribution with mean and variance as
described above. The process of selecting p(0) from a uniform distribution
of width -W to W will be referred to as the initial-search strategy. The
size of W 1is a compromise: It must be large enough to include possible
solutions but not so large that the volume being searched is excessive. The
choice of W depends, of course, on the particular problem; it is not
difficult to choose a reasonable value experimentally.

It is clear that the behavior of the adaptive algorithm is different
from the pure random or nonadaptive search described before. The vector
metric J that measures the disparity between desired and actual terminal-
boundary conditions is sequentially reduced rather than being reduced in one

10
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iteration. The way in which this occurs is jillustrated in figure 3, where a
representative surface is given in only two dimensions. Because of its adap-
tive character, the mean of the distribution moves, after any success, to the
last successful p. At this point the search starts locally and increases in
a geometric progression until the next success is obtained. In this way, the
successive values of J may jump from one valley to another, as indicated by
the numbered points, until a J less than the required e is reached. The
algorithm logic block decides when this condition occurs.

The virtues of the random-search approach are clear. It has desirable
local and global search properties so that '"hanging up" in local valleys as
with gradient methods is avoided. Further, the surfaces may be discontinuous
and have many peaks and valleys. The main question is, of course, the con-
vergence time, which is best studied experimentally with an example.

IMPLEMENTATION

The hybrid computer proved to be the most feasible way to implement the
random-search algorithm. In general, there are three basic computational
techniques available to the experimenter for the implementation: analog,
digital, or a combination of the two, hybrid. Of prime importance in the
selection of the computer system is a consideration of the number of itera-
tions required to find a solution, and this number is not known a priori.

For a second-order system, pilot studies indicate something on the order of
100 iterations to obtain a solution. Since the volume of the space increases
so rapidly with the order of the system, one might expect several thousand
iterations to be necessary for an increase in system order to perhaps five or
six. Thus, we see that the time per iteration will be of critical importance
and will largely dictate the means for implementing the search algorithm.

Each iteration can be divided into two steps: (1) integration of the
equations of motion on the interval [0,T], and (2) execution of the algorithm.
For the two problems to be discussed later, an IBM 7094 machine requires
1-10 sec to perform the integration in step 1. An analog computer, however,
performs the same integration in 1-10 msec with an accuracy of about 5 percent
relative to digital machine solutions. Thus for this specific example, the
analog computer is about 1,000 times faster than the digital computer in per-
forming the integration in step 1. The second step is best accomplished
digitally. The time required to perform the second step on a digital computer
of speed comparable to the IBM 7094 is the same order of magnitude as the time
required for the analog to perform step 1. Therefore, a great saving in com-
puting time can be realized over a completely digital simulation by a hybrid
approach. It is worth noting that an alternative approach was investigated,
utilizing pseudohybrid techniques; that is, an analog computer and limited
digital logic. However, our experience shows that inaccuracies, limited
storage, and limited flexibilities in logical operations seriously restrict
the feasibility of this approach.

11



In the hybrid implementation used here, the analog computer was delegated
the task of solving the state, adjoint, and control equations, as given in
equations (3). It also served as the point at which the operater exercised
manual control over the hybrid system. The digital computer was required to
provide storage, implement the necessary logic, generate the initial condi-
tions for the adjoint equations, and finally, to oversee the sequencing of
events of the iterate cycle. One remaining task, that of calculating the
metric, was performed either on the analog or digital computer, depending on
the type of problem; for fixed-time problems this calculation is accomplished
by the digital computer, while for free-time problems the metric must be
computed by the analog computer.

A complete discussion of the implementation is presented in the
appendixes. Appendix A describes the hardware; appendix B discusses the
algorithm flowgraphs in detail.

BEHAVIOR AND CHARACTERISTICS OF THE ALGORITHM

This section studies the behavior of the algorithm, some of its important
properties, and the effect of some of its possible variations. Naturally, the
results depend on the particular problem - in this case, an orbit-transfer
problem, which is described in detail in the next section.

The manner in which the system iterates and searches for a solution can
be illustrated by the use of two different displays. The first display,
illustrated in figure 4, gives information about the successive improved
iterations. This figure shows the successive improved values of the initial
adjoint vector p(0) and the corresponding decrease in the boundary cost
functions Jp, Jy, and Jp. It is worth noting that the p;(0) values can
creep to values outside the initial square distribution. This is illustrated
by the p,(0) value, which eventually crept to a solution value of 24 V even
though the initial square distribution was +15 V and the maximum standard
deviation of the gaussian distribution was oy = 10 V. This situation
occurred often. The second display, illustrated in figure 5, provides infor-
mation about every iteration. Here the values of the boundary-cost function
Jp, Jy, and Jp are shown for every iteration and also for just the successful
iterations. When no improvement is obtained in the J vector, the search
gradually enlarges until an improvement is found. At this point the search is
localized., It is easy to select a rational value for the lower limit of the
standard deviation o¢; with this type of display.

The convergence time to obtain a solution is certainly one of the central
considerations in the random-search method. Since this time is a random vari-
able, data were taken to give suitable averages and some indication of their
accuracy. In terms of the number of iterations N required for a solution,
it was found from 70 solutions that N = 7,724 and oy = 5,142. Thus, the
average time required to obtain a solution is about 1.25 min. The value of
o gives some indication of the accuracy to be expected for measurements of
other situations. For example, if 25 trials are made for another situation,
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we would expect the standard deviation of the average to be
oFy = oN/v25 = 1,000. This relation is only an indication, however, since the

standard deviation oy 1is not likely to remain the same for other situations.

Next, we will examine some of the possible variations in the algorithm
and its parameters to indicate their relative effects on the convergence.
Although these effects are studied for the given problem situation, the
trends are generally valid for other situationms.

First, the effect of the threshold strategy is shown in figure 6. The
value of n = 0 corresponds to removing the threshold strategy. Also, a
standard deviation is shown on the curve. It is worth noting that only a
small improvement can be obtained by increasing n.

Second, the effect of a one-step strategy, an end-search strategy, and
an increased initial search size are given below with standard deviations as
indicated.

Average number

Algorithm strategies of iterations

Algorithm with One-step strategy
End-search strategy 7,724 +610
Normal initial search size
Algorithm without One-step strategy 12,707 +1,150
Algorithm without End-search strategy 7,065 *1,626
Algorithm with Twice initial search size 9,971 *766

The one-step strategy is fairly effective since its deletion increases
convergence time by 65 percent, it was always beneficial in terms of conver-
gence, cost very little in search time, and therefore was always used. The
end-search strategy is slightly deleterious for the given situation and
increases convergence time by 10 percent. This increase is not too signifi-
cant, however, in view of the likely standard deviation. The end-search
strategy appears to be of greatest value when the algorithm has iterated to
the neighborhood of the minimum and has difficulty in meeting the boundary
conditions; such a situation might exist perhaps in the neighborhood of a very
sharp valley. In these cases, the end-search strategy greatly reduces the
size of the search and enhances the certainty of finding the minimum. The
effect of initial-search size on convergence is interesting. It is surprising
to note that an increase in the initial-search size of 100 percent in all five
adjoint variables (32 times larger volume) resulted in an increase of only

30 percent in convergence time.

To illustrate the effect of different J® on the convergence time, data

were obtained in which J© was chosen to be a fraction of the value based on
the initial x(0) and p(0). The effect of different fractional values is
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shown in figure 7, where it may be seen that convergence is fairly flat within
a wide range. At the lower values, the convergence time increases sharply,
because the search approaches the pure random search.

AN EXAMPLE PROBLEM - ORBIT TRANSFER

In this section the usefulness of the random-search algorithm in solving
a moderately difficult problem will be discussed. An orbit-transfer problem
was selected because it is high order, nonlinear, and the type of problem for
which optimization is appropriate; that is, since such large amounts of fuel
are involved in effecting an orbit transfer, it would be profitable to mini-
mize the required fuel. The first four subsections cover formulation of the
problem, the equations that result from an application of the Maximum
Principle, and the boundary conditions and the associated metric; the last
three subsections present some experimental results on the characteristics of
the orbit-transfer problem.

Formulation

The particular orbit-transfer problem considered was a transfer from an
earth-moon trajectory to a circular orbit around the moon. The physical prob-
lem is illustrated in figure 8 for the planar case. The final desired orbit
is 190 km above the lunar surface and has a radius 1928 km. The earth-moon
trajectories were assumed to be hyperbolic in the vicinity of the moon;
because of midcourse correction errors, the vehicle might be on any of a num-
ber of hyperbolic trajectories, which may or may not coincide at pericynthian
with the desired final orbit. This situation is depicted in figure 8 by
orbits 1, 2, and 3; orbit 2 is the only one that is tangent to the desired
circle. The problem is to find the time histories of thrust magnitude and
thrust orientation required to effect a transfer from any one of these orbits
to the circular orbit in a fixed time and with a minimal use of fuel.

For purposes of simulation, the rotating coordinate system shown in
figure 8 describes vehicle motion; the system origin is on the circular orbit,
and its velocity is the same as for a particle in that circular orbit. This
coordinate system is desirable because it subtracts large constant values from
the inertial coordinate system. If the vehicle is assumed to be controlled by
gimbaling a thrusting engine in which the mass flow rate is used to vary the
thrust, the exact equations of motion in the rotating coordinate system shown
in figure 8 are:

m()X - 2um(t)Y = -n(t)c cos o + m('C)<w2 _'§%> X+ m(t)(wz _'ﬁ%) Te

(17)

m(t)Y + 2mm(t)k —ﬁ(t)c cos B + m(t)<f»2 --i%> Y
T

The gimbaling implies the constraint
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cos?2 o + cos?2 B =1 (18)
In the above equations m{t) is the vehicle mass, w 1s the angular velocity
of the rotating coordinate system, ¢ is the exhaust velocity, a and B are

the angles between the thrust vector and the X and Y axes, respectively, r

is the radius to the vehicle in the inertial coordinate system, r. 1is the
radius of the desired circular orbit, and u is a gravitational constant,
Typical values used were m(0) = 39,096 kg, c = 3.1405 km/sec, r. = 1928.68 km,
p = 4,890 km3/sec?, [Ih(t)]max = -31.07 kg/sec, w = 8.259x107* r/sec.

If we let x3 =X, Xp =X, x3 =Y, x4y =Y, xs = m(t), and u; = cos a,
up, = cos B, uz = -m(t), the equations of motion can be put in the state

“vector form

x = f(x,u)

where x = (x1,X5,X3,X4,X5) and u = (uy,us,uz). In expanded form we have the

. set of five nonlinear differential equations:

x1 = X2 j
. cu,u
X] = 2wxy + 13 +(e2 —-J% Xy + (92 - J%- T

X5 T r
X3 = Xy (19)
. cusu
Xy = -2wXy + 23 (wz - J%)X3

X5 T

)'(5 = -ug S

The terms involving 1, which are difficult to simulate accurately,
provide small corrections to the more dominant terms involving only the states
in the rotating coordinate system. However, a simpler model, which ignores
these correction terms, introduced significant errors in end states and fuel
required.

The task is to minimize the fuel required to transfer from a given

position on the hyperbolic orbit to the circular orbit in a fixed time T.
Thus, the quantity of fuel used is introduced as the added coordinate;

Xo(t) = fF us(r)de (20)

and we can interpret the objective as the minimization of the terminal value
Xo(T). This additional coordinate requires the corresponding differential
equation

Xo(t) = u3(t) (21)
to be adjoined to the set (19).
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Maximum Principle Solution

The solution for optimal control centers around the Hamiltonian defined
by

Hlp(t),x(t),u(t)] = (p,f) (22)

where the p and f vectors are augmented by the auxiliary variables P, and
Xy, and (p,f) is the inner product. For the orbit-transfer problem,

H = pouz + P1Xp + pp[2uXy + — =+ (w -';3) (x; + rc)

Cusujg
+ p3Xy + pq[}waz + ——ig—-+ (w2 - ﬁ%) x3] - Psuj (23)

Two important sets of equations can be derived from this Hamiltonian.

The equations of the first set are the adjoint equations defined by

bi = -3H/3x;. An approximate set of adjoint equations can be shown to be
. ™
Po =0
. _ 2 u)
= - w — —
P1 Pz( 3

P, = -P; * 2up,

P3 = -Pu(‘*’2 - J%)

(24)

Py = “P3 - 2uwp,
. cuz (pyu; + pyuy)
Ps = 7

X5 _J

Each of the exact adjoint equations for p; and p3 consists of three terms
instead of the one term shown above. Equipment limitations precluded simu-
lation of all these terms, so an approximation was required. The approxima-
tion requiring the least hardware would result from the following
considerations. If the assumption is made that r is close to the desired
orbit, the terms containing r in the state equations become negligibly
small, and the corresponding adjoint equations then become p; = p3 = 0. As
an improvement over this approximation we utilize one of the three terms in
the exact p; and p3 equations; because these terms are already available
in the simulation, they do not require additional equipment,
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Such an approximation for the p; and p; variables can be justified by
the specific way in which they affect the control function. It was estimated
that any variations of the p; and p; variables (determined by the exact
differential equations) would have small influence on the differential equa-
tions for p, and p,. Since p; and p; couple to the control variable
through the "p, and p, differential equations, it can be concluded that the
influence of the variations of the p; and p; variables on the control
variable and associated performance would be small.

The second set of equations is for the optimal control vector that
results from maximizing H over the control set. Since the control is
bounded, it is not sufficient to equate ©dH/3u to zero and then solve the
resulting expression for the optimum control. A direct maximizing procedure
leads to the following result:

~
Py
T
u, = Py
2 P (25)
i Xs
M if V=HPH-—C—(P5+1)>O
ugz =
0 otherwise y
where |IP|] = /%22 + pL*2 and M is the magnitude of the maximum thrust. It is

seen that the thrust magnitude is either on or off depending on the sign of
the switching function v, and the thrust angles are continuous functions of
the adjoint variables. To obtain an explicit solution, it is now necessary
to solve simultaneously by means of the analog computer equations (19) for

X, equations (24) for p, and equations (25) for control u, subject to cer-
tain boundary conditions yet to be discussed. The auxiliary differential
equations for Xxp(t) and p,(t) do not couple directly to the other equations;
however, xg(t) must be computed to determine the fuel.

Boundary Conditions

The boundary conditions, as yet unspecified, are the heart of the random
search method. The initial values for the state vector x(0) are fixed at
the given values, whereas the initial values of the p(0) vector are chosen
by the algorithm. The desired terminal conditions can be specified in a
variety of ways depending on the target set chosen, On the one hand, the end
points could be treated as fixed at some point such as the origin of the coor-
dinate system. This is somewhat restrictive. On the other hand, the end
points could be treated as variables by taking the target set to be the
desired circular orbit. This approach would yield the best point in the
target set but would require the satisfaction of complicated transversality
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conditions. This investigation followed a middle course to avoid complicating
the problem and selected the desired circular orbit as the target set. How-
ever, the end point was considered fixed at whatever specific point on the
circular orbit (target set) is reached in the fixed time T. The advantage of
this specification is that the boundary conditions are somewhat simpler than
if the more complex transversality conditions had been included. With these
boundary conditions, the vehicle will reach some point on the desired circular
orbit but perhaps not the best point. However, as we will see in a later
example, the fuels for the large majority of solutions were so close to the
theoretical minimum fuel based on impulsive orbit transfer that satisfying

the more complex transversality conditions could not appreciably improve the
solution. This conclusion was found valid over the range for which the
problem was studied. The specific values for the terminal boundary conditions
can be found from conventional theory and summarized as:

X1 (T) %, (T) ,x3(T) ,x, (T)  fixed |
x5(T) free

(26)
p, (M ,p, (T),p5(T),p, (T) free

p;(T) =0 fixed )

The Vector Metric

For purposes of satisfying the boundary conditions, the components of
the metric J need to be specified. Since the target set is taken to be the
circular orbit, a suitable displacement metric is

Jp = |r(t) - .| 27

where 1. 1is the radius of the desired circular orbit. As for the velocity
metric, it is clear that for the vehicle to stay close to the desired circular
orbit after the terminal time T, the radial component of the inertial veloc-
ity VR should be small, and the tangential component Vg should be close

to the velocity rew for the circular orbit. Thus, a reasonable metric that
measures the errors in these velocity components is

Iy = Mo - vp? + V2 (28)

The quantities Vy and Vg are simple transformations of the states in the
rotating coordinate system. The only adjoint variable that must be fixed at
the terminal time is Pg, SO that we use simply

Jp = pg”(T) (29)
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The components of J must be reduced to values that depend somewhat on the
mission and accuracy requirements after the terminal time. These values were
chosen to be

ED = 8 km
ey = 15 m/s (30)
EP = 0.5V

The velocity requirement, ey, reduces the terminal inertial velocity to less
than 1 percent of the initial value. The adjoint variable requirement was
readily found experimentally. As mentioned in the discussion following equa-
tion (8), values of ep several times this value were found to be still
satisfactory.

Results for Orbit-Transfer Problem

In the particular orbit-transfer situation discussed in this section,
the vehicle is approaching the moon on hyperbolic orbit number 2 (fig. 8).
Pericynthian coincides with the desired final circular orbit, which is 190 km
above the lunar surface. The initial starting point was chosen as -37°, and
the time allowed for the vehicle maneuver was taken to be 600 sec. For
comparison, the time to reach pericynthian with zero control is 534 sec.

A typical solution obtained by the random-search algorithm is
illustrated in figure 9 by the complete set of time histories; shown are the
system states in the rotating and inertial coordinate systems, the control
vector, and the adjoint variables. Perhaps the most interesting are the
velocities X, and x; in the rotating frame, which are reduced from large
values of around -900 m/sec and 400 m/sec to small values so that the iner-
tial velocity components VR and Vp can be reduced to near their desired
values. Also the quantity r - T, the difference between the vehicle
terminal radius and the desired circular orbit radius, is reduced to a small
value so that the vehicle will arrive near the desired orbit. The terminal
inertial value & 1is slightly positive, indicating the desired orbit was
attained slightly past pericynthian. The optimal control vector is also of
interest; it is indicated that the thrust should be turned on at about
260 sec before the fixed final time and directed as shown in figure 9(e).

Average performance and its variation are perhaps more significant than
an individual solution. The time histories of 70 solutions varied only
slightly. In terms of the end states and fuel used, the following statistics
were obtained:

Av 27 = 1,935 +5 km
AvZ = 33 +8 km
Av[r(T) - r.]= 6 *2 km

Av(VT - Tew)= 2 %5 m/sec
Av VR = 1 £12 m/sec
Av fuel = 10,230 +80 kg
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It is worth noting from the data for 2,7, and T - r. that the set of
reachable points is centered slightly farther out than the desired circular
orbit and slightly past pericynthian; the standard deviation shows this set is
confined to a very small region. The inertial velocities have been substan-
tially reduced from the initial total magnitude of approximately 2400 m/sec.
The fuel data are interesting because the figures are so close to the
idealized minimum-fuel impulsive orbit transfer of 10,120 kg.

It is significant to note that from this same set of 70 solutions, the
solutions for the initial condition adjoint vector p(0) were vastly differ-
ent even though the time histories of the system states were so close. The
extremes observed as well as the p(0) vector corresponding to figure 9 are
as follows:

Adjoint Values from

variable Extremes figure 9
P, -31.98 to +7.15 -11.36
P, +1.08 to +14.67 +8.96
12 -8.33 to +35.60 -.54
Py -11.94 to +5.45 -9.25
P -7.98 to +8.11 -6.30

These results are significant because they illuminate the nature of the
mapping p(0) - J. In geometrical terms, discussed in more detail later,
these results mean that the boundary cost-function hypersurfaces have many
stalactites protruding below the e level.

Variations in the time allowed to reach the desired orbit were studied
with much the same type of results described in the preceding paragraphs.
Solutions were obtained for times from 550 to 850 sec (the time to reach
pericynthian with zero control was 534 sec). The main difference in results
obtained was that as the allowable time increases, the set of attainable
points as given by 2 and & moves farther around the desired circular orbit
and the fuel requirements appear to increase. For example, for T = 850 sec,
2~ 1828 km, & ~ 658 km, and the fuel required increased by about 300 kg.
When the allowable time was outside the range given above, no solutions were
obtained.

Results for Other Orbit-Transfer Situations

The algorithm was experimentally tested on a variety of physical
situations, which include different initial points along each of the three
trajectories as indicated by the grid of points in figure 8, different allow-
able times for the vehicle to reach the desired point, and variations in some
of the vehicle design parameters.
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Figures 10 and 11 show two different solutions to the same problem in
which the starting point is farther along on orbit 2 (-13°) than in the pre-
vious two sections. These solutions are interesting because of the unusual
control functions found. One of the control solutions has two thrusting
periods (on-off-on) with the initial thrusting being quite long; the other
solution has only one thrusting period (on-off) and again the initial thrust-
ing is long. In contrast, most of the solutions found for other situations
have only a single thrusting period of the off-on type.

Figures 12 and 13 illustrate solutions obtained on orbits 1 and 3. On
orbit 1, the solutions showed there was always one thrusting period of the
off-on type (see fig. 12) for all starting points along the orbit and all
times T for which solutions could be obtained; the fuels used were close to
the values obtained on orbit 2. On orbit 3, the solutions nearly always con-
sisted of the more unusual two thrusting periods of the on-off-on type (see
fig. 13). It was also noted that solutions were quite difficult to obtain on
orbit 3 and that the fuels required were approximately 1500 kg greater than
on orbits 1 and 2.

It was also demonstrated that the random-search approach could be of
considerable value in preliminary vehicle and/or mission design studies. For
this purpose, the effects of varying the initial vehicle design parameters,
thrust level and mass, were investigated. It is significant to note that
solutions could readily be obtained with thrusters of 75 and 50 percent of
the normal thrust capability used in the previous portions of the study.
Similarly, there were no difficulties in obtaining solutions for different
initial vehicle masses.

Boundary Cost-Function Surfaces

Perhaps the most illuminating results were revealed by an experimental
study of the mapping: p(0) -~ J. Geometrically, this mapping can be inter-
preted as three hypersurfaces (representing the components of the metric JJ},
which are functions of the five adjoint initial conditions. The character of
the cross sections through these surfaces at a solution point is given in
figures 14 and 15 for the two different problem situations indicated. These
curves were obtained by slowly varying one of the variables from -100 V to
+100 V while all the others were fixed at their respective solution values.
In this manner, cross sections through the hypersurfaces passing through a
solution point were plotted. Note the dip in all three surfaces at the opti-
mum value of the adjoint variable. The interest in these curves is, of
course, in the rather irregular, multivalleyed nature of the surfaces as well
as the rather narrow valleys surrounding the optimum point. The sharpness or
narrowness of this valley gives an indication of the difficulty in finding
the solution. Further, these surfaces clearly indicate the difficulties that
gradient methods would have because of the likely possibility of '"hanging up"
in the wrong valley. The flat regions in figures 14 and 15 are actually
plateaus in the parameter space and not saturation of the computer equipment,
with the exception of the flat regions at the extreme left and right sides of
the Jp curves. Such plateaus occur because for certain ranges of the p(0)
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parameters the switching function is such that the control u3 is zero.
These plateaus would present problems to gradient procedures. The two-
dimensional cross sections shown give only a hint of the difficulties to be
encountered in the actual six-dimensional space.

Another more pictorial representation for the problem situation in
figure 14 is given by the three-dimensional views in figure 16. Here are
shown the boundary cost-function surfaces in the p;,p, plane and in the
p;,p, plane, while all other adjoint variables are fixed at their solution
values, These results illustrate the character of the surfaces away from the
optimum point in two directions instead of only one direction.

Further clues as to the nature of the boundary cost-function surfaces are
revealed by previously presented data, which showed that many distinctly
different p(0) vectors result in solutions and that the surfaces have many
stalactites protruding below the e level.

AN EXAMPLE PROBLEM - SATELLITE ATTITUDE ACQUISITION

In this section, the random-search algorithm is applied to the single-
axis attitude acquisition control problem, where the time to acquire the
desired boundary conditions is left free. The problem is formulated through
a physical description of the problem and derivation of the exact equations
of motion. Second, the equations necessary for determining optimal nonlinear
control as derived by means of the Maximum Principle are outlined, as well as,
for comparative purposes, the optimal proportional control derived in refer-
ence 14. Next, the boundary conditions and the vector metric are discussed.
The final two subsections illustrate the computer results through a variety
of time history solutions and fuel performances, and some cross sections
through the boundary cost-function hypersurfaces.

Formulation

Consider a rigid body V rotating about its center of mass and fixed in
inertial space. A set of axes will be taken fixed to the vehicle and alined
with the principal axis of inertia with its origin at by, the center of mass
(fig. 17). Finally, consider the vehicle to be inertially asymmetric and to
be in a general tumbling motion at some arbitrary initial time.

The objective of the control is to apply torques in a manner that will
reduce total momentum to zero and orient a particular axis of the vehicle from
any initial orientation to any other prescribed orientation in inertial space.
The control torques required to orient the vehicle are assumed to be produced
by mass expulsion devices alined in each of the three body axes. It is
assumed that the torques produced by these devices are proportional to mass
flow rate and that the flow rates are bounded at some maximum value (except
when proportional control is examined). The vehicle is to be controlled with
the least amount of fuel and in any time within an arbitrary interval [0,T].
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The dynamic equations of motion of a rigid body rotating about a point
fixed in inertial space and acted on by external torques are given by the
following set of equations:

¥
1)
wawg + —2

w1

(;)2 = (B - 0L)(.03(1S1 + Yo » (31)
ba = 2oL Y3
3 = B 1W2 B J
where
a = I;/I, Roll-to-pitch inertia ratio
B =1I3/I, Yaw-to-pitch inertia ratio
Y, = M/L,
Control accelerations
Y, = M2/I2 (rad/sec?) normalized
to Iz
Y3 = M3/l,
wj = body rates, rad/sec
i=1, 2,3

M; = torque

The kinematic equations necessary to relate the body axes to the inertial
axes can be chosen in various ways. We will choose the independent set of
direction cosines ajj to relate the three body axes i =1, 2, 3 to the
jth inertial axes where ajj is the cosine of the plane angle between bj
and S;. In this study we are interested in single-axis orientation, and we
will choose to orient the bj body axis with the inertial axis S3 (see
fig. 17). Thus, the three direction cosines (a3, as3, az3) will be of
interest. These three kinematic variables are related to the dynamic vari-
ables by the following set of differential equations (see ref. 14 for a
detailed discussion):

a3 = w3agsz - Wpyass
453 = wpas3 - wW3al3 (32)
433 = wod)13 - W1a23
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For this study, the specific values of the roll and pitch inertia ratios were
taken to be o = 1.15 and 8 = 0.48. Also, the maximum control torque
accelerations permitted in the nonlinear controller situation are:

Y, =, = 7.5 m rad/sec?

max max max

To transfer equations (31) and (32) into state variable form, the
following substitutions are made: '

Y1
ayz = X3 wy = Xy U =5
ap3z = Xp wy = Xg U = Y3

_ _ _ Y3
a3z = X3 w3z = Xg uz = B

This yields the following set of state variable equations:

X] = XgXp - X5X3 A
kz = XpX3 - XgX]1
i3 = X5X1 - XyuXp
. 1 - g 3
Xy = — & Xs5Xg + U1 (33)
x5 = (B - a)xgxy + up
% = 2L xixs + u
6 B 4Xs 3 )

The objective of the control is to take the state vector from a fixed
initial value x(0) to a fixed final value Xf(tms) in an unspecified time
tps within the interval [0,T], while using the least possible fuel. A new
coordinate, proportional to the total fuel used in all three axes, can be
defined as follows:

t 3
Xo(t) = f 21 lu; (1) |dr (34)
o] 1=

and we can then interpret the objective as the minimization of the terminal
value Xo(tms)-
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Maximum Principle Solution
The nonlinear optimal control can be derived by an application of the

Maximum Principle. The equations necessary for computer implementation are
summarized below. First are the adjoint equations:

P1 = PoXg - P3Xs A
Py, = P3X, - P1Xg
P3 = P1X5 - PaXy

. o -1 35)
Py = P3Xy - PpX3 - PsXg(B - ) - PeXs — (

1 -8 o & 1
o PeXy )

Ps = pPiX3 - P3X1 - PuXe

. 1 -8
Pg = PpX; = P1Xp - PyXg ——— - PsXy (B - a)

Second are the equations defining the optimal control vector at each instant
of time:

uj (t) = Nysgn p,, (1) if |pi+3(t)l > 1
(36)
Cuj(t) =0 if |pi+3(t)| <1
where i =1, 2, 3 and N; is the maximum torque acceleration allowed in the

"ith control axis. Note that the same direct method for maximizing H over
the control set applies to this problem as it did for the orbit-transfer
problem of the previous section. The control torque is of the on-off type,
and torque direction is obtained by assigning the correct sign to the "on"
signal according to equation {(36).

Proportional Control Law
The optimal proportional control law used in this paper for comparative

purposes was taken from reference 14, in which the structure of the law is
assumed to be of the form:

uy; = Dxy - Exp
up, = Fxg + GX3 (37)
uz = Hxg

The parameters D, E, F, G, and H were left free, and by means of a random
parameter search, suitable values were found for which the stated objective
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of the problem (zero momentum and alinement of bj to S3) was achieved. The
search was repeated a number of times, and each time, system performance given
by equation (34) was observed. An optimum parameter vector was selected from
the set of parameter vectors that satisfied the problem objective and mini-
mized the performance criteria. This parameter vector, in conjunction with
equation (37), defines optimal proportional control. This control may be
difficult to achieve in practice; however, since no bounds have been imposed
on the thrust. When there are bounds, the control law is then referred to as
optimal saturating proportional control.

The Vector Metric

The desired boundary condition at the terminal time was chosen to be
zero momentum and alinement of the body axis bgs with the inertial axis Sj3;
this is expressed by Xf(tms) = (0,0,1,0,0,0). In the random-search approach,
it is necessary to introduce the vector metric J to satisfy these boundary
conditions. Its general form was specified previously to be J = (Jp,Jy,Jp)
where the subscripts on the components identify them as displacement, veloc-
ity, and adjoint (or transversality condition) errors, respectively. In this
application, since all terminal states xfg(tpg) are fixed, p(t; ) is com-
pletely free so that we may ignore the Jp component in the vector metric.
For the present example, Jp and Jy are taken to be

Jp = /xi? + x? ¢ (x3 - 12
(38)

JV = /XLFZ + X52 + —X62

It is clear that Jy = 0 implies xy,X5,Xg = 0, which represents zero
momentum as desired. Also, Jp = 0 implies the desired final orientation
X1 = Xp = 0 and x3 = 1. In practice, we require only

(Jp,Jdy) < (ep,ey)

where the € values are chosen to meet the problem requirements. For the
specific problem discussed below, the chosen value of ep vrequired that the
b3 body axis be oriented to within 8° of the S3 inertial axis. The ey
value chosen represented a 0.75°/sec error rate in each body axis at the
final time tyg. These values are primarily determined by the accuracy with
which the analog computer can calculate equation (38) over the full range of
state variables between initial and final times. The above values could be
made smaller if desired by an automatic rescaling or perhaps another choice
of the form of the metric. This was not done here because such a reduction
of the e values would not appreciably affect the fuel consumption.

Results for Satellite Acquisition Problem

This section covers some computer solutions for the satellite attitude
acquisition problem, with an emphasis on results for the optimal nonlinear
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control obtained by implementing the random-search algorithm discussed in the
preceding sections. For comparison, we will also give results for the pro-
portional control studied in reference 14.

Table 1 summarizes the control systems to be studied, the initial
conditions of the vehicle, and the resulting fuel requirements. In the ini-
tial condition vector, the first three components are the angular position
variables given in terms of direction cosines, and the last three components
are the angular velocities given in degrees per second. The desired final
condition vector is taken to be xg(tpg) = (0,0,1,0,0,0), which reflects the
objective of control to reduce the initial momentum to zZero and to aline the
body axis bz with the inertial axis Sj.

No control.- Figure 18 shows the time histories of the state variables
describing the motion of the system when no control is used and the vehicle
starts with the initial condition x(0) = (0,0,1,-10,10,10). This corresponds
to initial alinement of axes but with the initial angular velocities indi-
cated. The angular positions vary over their entire range (-1,1) during the
time interval [0,tpg]. These results suggest that with limited torque con-
trol, the wide range of angular position variations would persist over a sub-
stantial portion of the interval. In this event, the equations of motion are
definitely nonlinear and it is inappropriate to linearize them. The Maximum
Principle allows these nonlinearities to be dealt with directly.

Optimal proportional control.- The time history solutions for the
optimal proportional control derived in reference 14 (as discussed above) are
given in figure 19 for the same initial condition as with no control (see
table 1). As is well known, optimizing system performance under the assump-
tion of proportional control often leads to impulsive-type control. This
tendency can be seen in figure 19(c) where the initial torque acceleration
rises to 44 millirad/sec? and then decreases relatively quickly to zero. A
normalized fuel consumption as measured by the computer was Xo(tpg) = 0.65,
which is nearly two and one-half times the minimum theoretical value of 0.28
obtained by allowing an ideal impulse of torque.

It should be noted that the fuel requirement of 0.65 was attained with
ideal proportional control, that is, without saturation of the torque. Refer-
ence 14 demonstrated that the effect of saturation on the proportional con-
troller 1s to increase both the consumed fuel and the time required to
accomplish the mission.

Optimal nonlinear control.- The solutions for the optimal nonlinear
control obtained by implementing the random-search algorithm are given in
figures 20 and 21. These figures correspond, respectively, to the cases indi-
cated in table 1: initial alinement and initial nonalinement.

The results given in figure 20 are for initial alinement of axes in
which the initial condition vector is x(0) = (0,0,1,-10,10,10), the same as
for the other controllers discussed above. A comparison of figure 20 with
figures 18 and 19 shows that the solutions obtained are quite different from
the previous cases. The maximum torque chosen for optimal nonlinear control
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was approximately one-sixth the peak value for proportional control; note the
different origins for the three control functions. From careful examination
of the time histories, it appears that the optimal control law is anticipa-
tory: it acts at the most advantageous moment to reduce the large excursions
of the states to the desired end values. Fuel consumption was found to be
Xo(tpg) = 0.31, which is only 1.1 times larger than for the optimal impulsive
case. By comparison, the optimal proportional control is very inefficient,
requiring 2.1 times the fuel for optimal nonlinear control. This factor
would be even larger if the comparison were made to the more practical satu-
rating proportional control system. The operate times in figure 20 are
nearly the same as for the proportional control system; thus, we need not
necessarily expect a time penalty for the practical constraint imposed by
control saturation.

In the results given in figure 21, the initial condition vector x(0)
is not alined. The initial value is x(0) = (0,1//5,1//5,—10,10,10) and
corresponds to an initial rotation of bs of 45° in the S,,S3 plane. The
time histories and optimal control thrust are seen to be similar to those
with initial alinement. As for the fuel, we might expect that the initial
angular position error would require a higher fuel consumption to achieve the
same objectives. Indeed, experimental data show that fuel required is 0.43
which is 40 percent more than when the axes are initially alined.

Boundary Cost-Function Surfaces

It was pointed out previously that irregularity in the boundary cost-
function hypersurfaces reflects the need for a search algorithm that incor-
porates both global and local search properties. The highly irregular nature
of these hypersurfaces for the attitude control problem is demonstrated in
figure 22, which shows typical two-dimensional cross sections through the
hypersurfaces at a solution point. The curves were obtained in the same
manner as described for the orbit-transfer problem. Note in particular the
irregular multipeak nature of the surfaces and the occasional noisy
appearance.

CONCLUDING REMARKS

A feasible computational method for solving the two-point boundary-value
problem associated with the Maximum Principle has been established. The
method generates explicit optimal solutions for complex, nonlinear control
problems. As illustrated in this paper, the method can be used to solve
problems for which optimum solutions have not been previously obtained. One
of the problems solved indicates the striking improvement in performance that
can be obtained by the use of optimal nonlinear control.

Although the solutions obtained are open-loop solutions, the usefulness
of the technique, from the control point of view, is in its value as an off-
line preliminary system design tool permitting study of trade offs among
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various initial design choices in terms of performance. Furthermore, it is
generally accepted that knowledge of optimum open-loop control data could be
valuable in building closed-loop (on-line) controllers.

The feasibility of the method is made possible by the uniqe computa-
tional capabilities of the hybrid computer. A major advantage of such a com-
puting system is the speed with which nonlinear discontinuous differential
equations can be integrated. An approximate 1000:1 speed advantage with
respect to the digital computer was obtained.

The method could be used more effectively in an on-line or off-line
implementation with an increase in the iteration rate, which generally must
be achieved through advances in hybrid systems, although a moderate rate
increase with the present system could be realized by careful redesign of the
program. Undoubtedly the most important limitation of the method is due to
the minimum resolution of the analog computer. Thus, certain problems with
large dynamic range might be excluded, or perhaps require complicated scale
changing.

Finally it should be reiterated that the random-search algorithm could
be used in a great many situations other than the two-point boundary-value
problem discussed in this report. For example, some curve-fitting problems
can be framed as a multiparameter search problem suitable for direct
application of search techniques outlined in this paper.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 28, 1969
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APPENDIX A
THE HYBRID-SYSTEM HARDWARE

This appendix describes the computer hardware utilized to implement the
algorithm. The description will provide the reader with a basis for evalu-
ating the adequacy of the computer equipment available to him.

Figure 23 is a hardware diagram of the hybrid system, showing the two
basic elements of the simulation, the analog and digital computers along with
their coupling system, and peripherals. The coupling system comprises two
distinct parts: (a) the linkage system, and (b) the control interface system.

Digital Computer

The digital computer used in the optimization program was an Electronic
Associates, Inc. (EAI) model 8400. It is a medium-sized, high-speed computer
designed to operate in a hybrid environment. The particular machine used has
24,576 words of core memory with 32 bits per word. Memory cycle time is
2 usec. The machine uses parallel operation for maximum speed. Floating-
point operations are hardware implemented. A MACRO ASSEMBLY programming
language is included to minimize the execution time. The instruction
repertoire includes special commands by which discrete signals can be sent to
or received from the external world. External interrupts are provided that
can trap the computer to a specific cell in memory. In an example to be
discussed later the optimization program utilized about 8,000 words of
storage; about 1,000 constitute the actual optimization execution program,
and the remaining 7,000 are used for subroutines, monitor and on-line
debugging, and program modification routines.

The peripherals of the digital computer include magnetic tapes and a
card reader for program input and storage, and a printer for data logging.

Analog Computer

The analog computer for the fixed-time solution was an Electronic
Associates 231R-V; for the free-time solution, an Electronic Associates
model 8812 was used. Both computers are of the general-purpose type and are
quite conventional.

The analog computer serves as the point at which mode control of the
hybrid computer is accomplished. By manual selection of switches either of
two modes can be commanded:

1. 1In the "search'" mode the analog computer operates in a high-speed
repetitive manner. Such operation is accomplished by controlling the mode
of the individual integrators with an appropriate discrete signal. This
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signal is a two-level signal, generated on the control interface in conjunc-
tion with the digital computer, that, depending on the level, holds an
integrator in either "operate'" or "initial condition'" mode.

2. 1In the "reset'" mode, the integrators are placed in their initial-
condition mode and held there.

Particular analog equipment worth noting are the track-store units, D/A
switches, and comparators with which the control logic was implemented. At
the end of the operate period T, the digital computer reads a number of
variables to be used in the algorithm. Because of the high repetitive speeds,
the value of a variable could change considerably between the end time T
and a later time when it is actually converted. Thus, track-store units were
used to hold the variables at their respective values at time T until the
digital computer read all of the values. The control logic requires on-off
type switching, and the high-speed electronic comparators and electronic
switches were necessary for proper operation. Nonlinear operations such as
multiply and divide provided no particular difficulties, although a square
root operation did require the use of a diode function generator in one of
the examples.

For continuous output, a display console was connected to the analog
computer to provide visual readout of variables. The display contained a
cathode ray tube (CRT) that could simultaneously display up to four channels,
and enabled photographic records to be taken of the display quantities. The
display was extremely helpful in determining if the algorithm was functioning
properly. Other continuous analog data useful for determining proper func-
tioning were p“ and JZ, which could be recorded on a pen recorder since their
rate of change was low,

Control Interface

The control interface between the analog and digital computers was an
Electronic Associates DOS 350 for the case of the fixed-time implementation.
Free-time implementation utilized the interface (as well as logic) that is a
part of the Electronic Associates 8812 analog computer. It is through the
control interface that the iteration process is controlled. An important task
allocated to this subsystem is the operate-time control. This function is
implemented through the use of a counter and is the key element in the control
of all timing in the hybrid simulation. The counter is driven from a high-
frequency source in the interface system allowing for a very high degree of
resolution in the simulated operate time. The counter is constructed by
patching modular blocks that can be combined to give a wide range of simu-
lated operate times. Specific times within this range are selected with
thumbwheel switches. Two other functions of the interface are: (1) to sense
any conditions in the analog computer that can be represented by discrete
variables (binary levels), and (2) to send discrete signals to the analog
system to be used as control levels or indicators. An example of (1) would
be the hybrid system mode control, which merely amounts to the operator
depressing the '"'reset'' or '"search'" switch on the analog console. This action
sets a binary level that is then sensed by the digital computer. An example
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of (2) is when the digital sends the operate command to the operate-time
counter., The interface system allows patching of Boolean functions. Hence,
some of the logic operations required for timing pulses, event signals, and
other like operations were very effectively programmed here.

Linkage System

The linkage system shown in figure 23 houses the conversion equipment -
the A/D (analog to digital) and D/A (digital to analog) converters. It is
through here that all of the data passes between the analog and digital
portions of the simulation. The linkage system is controlled by command from

the digital computer.

Input to the digital computer is through the A/D converter which has
preceding it a channel selection device or multiplexer to select the analog
channel which is to be converted. Conversions were done sequentially through
the analog channels at a maximum rate of 80,000 samples per sec from channel
to channel. Conversion of 10 channels thus takes 125 usec.

Output to the analog used the D/A converters with each data channel

having its own conversion unit. The maximum conversion rate of the D/A's
used is 250,000 conversions per sec.
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APPENDIX B

THE HYBRID-SYSTEM PROGRAMS

This appendix covers the use of the hardware systems for implementation
of the random-search algorithm. The first section discusses the sequence of
events in the iterative cycle of the algorithm; subsequent sections detail the
digital and analog programs.

Sequencing of Events During One Iteration

Figure 24 shows the sequencing of events during one iteration cycle; the
instants of time t;,t,, . . .,ts are fixed relative to each other, and the
cycle begins at t; with the analog integrators in an operate mode. The
elapsed time (t, - t;) is controlled by a counter on the interface system.

At t, an interrupt pulse generated on the control interface (1) signals the
digital computer to commence its operations, and (2) simultaneously instructs
the track-store units of the analog computer to hold their respective values.
During the interval (t3z - ts) the digital computer reads these analog vari-
ables with the A/D converter. At t3 the digital sends a pulse via the
interface to the analog console which commands the integrators to an initial
condition mode. At t,, when the data required by the analog have been gener-
ated by the algorithm, the D/A converters send these values to the appropriate
points in the analog portion of the simulation. The digital machine allows
enough time for the transients to settle in the initial condition circuits of
the analog before sending a command at tg (the same event as t;) that places
the integrators in an operate mode and starts the counter. Since tg and t;
are the same event, repetitive operation is under way.

The total iterate time (tg - t;) 1s composed of two main parts:
(to» - t1), which in the example problems was scaled in the simulation to
between 2 and 10 msec; and (ts - t,), which was determined primarily by the
speed of the digital machine in computing, converting, and generating random
numbers. The second period was on the order of 8 msec. Thus, the total
iterate time for the above situation is on the order of 10 to 20 msec (or
100-50 iterations per sec). This figure is dependent on the control problem
chosen and the exact form of the algorithm implemented.

Digital Flowgraph, Fixed Time
Figure 25 is a program flowgraph showing the operation of the algorithm
and the iteration process for the fixed-time problem. Note the inclusion of
the event times tj,t;, . . .,tg discussed in connection with figure 24.

The program is continuously recycling in a high-speed repetitive fashion.

There are three basic loops which correspond to the three system modes
in the optimization program: a reset loop, a search loop, and an end-state
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loop. The reset loop is for the purpose of initializing the program. The
search loop of the program uses the algorithm to search for a solution to the
problem. The end-state loop is entered by the digital program when a solu-
tion is found, and is used for the generation of graphic displays. The
operator manually selects the search or reset mode as discussed in the section
dealing with the analog computer.

Reset loop.- The reset loop of the repetitive operation cycle initializes
the program and prepares it for the search mode. When the system is in the
reset mode, the integrators of the analog computer remain in their initial
condition state. The flow of the reset cycle is shown in figure 26, where
that particular loop is emphasized by line weight. It is while the system is
in the reset mode that the digital program is first entered (at START in the
figure). The first operation performed is that of initialization. It is
during this process that all the program variables are set to their initial
states. Also, the line printer is initialized and the data header printed.
The interrupt line then is activated, the analog computer is signaled that an
iteration cycle is to begin, and the counter controlling the operate time of
the analog is started. The digital computer then halts and waits for an
interrupt to signal that the period T has ended.

When the interrupt occurs, the digital program proceeds to the next
operation where the values of the states xk(T) and pk(T) are read through
the A/D converter. Once the inputs to the digital computer have been read, a
pulse is sent to the analog computer to place the integrators in their initial
condition mode. Since the integrators are in the reset mode, and hence
already in their initial condition state, this pulse has no effect; it is
needed later, however, when the system is in the search mode or the end-state
mode where the integrators are not so constrained.

The next operation performed is that of calculating the metric Jk
based on the samples of the state obtained in the last block. Since the
terminal states are the same as the initial states in the reset mode, JK is
a function of x(0) and p{0). The value is thus peculiar to the reset mode
and is designated J°. One could, of course, choose an arbitrary fraction of
JO, or even an arbitrary value. Once the metric is calculated, the digital
computer tests the system mode and branches to that portion of the program
that is exclusive to the reset loop.

The program now initializes the algorithm b{ setting mK = pZ(O) =0
and J¢ = J°. The values of the components of 7pX(0) are then generated using
a uniformly distributed noise source, the space of the noise being [-W,W].
Note that in reset mode, pk+1(0) = ¢gk+1 To discuss the next operation it is
necessary to consider what happens elsewhere in the program. During the
search mode, the program can modify the values of the variance sequence

(01, . . .,0.); that is, when certain conditions are met the values of o3
through o, are changed to another set of values. (See discussion, p. 10, on
end-search strategy.) Now, since it is possible the search strategy will
have to be reinitialized (see discussion following eq. (14))}, it will be
necessary to restore the initial values of the variance sequence to those
determined by the normal strategy. This reinitializing is accomplished in
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the second to last block in this path of the flowgraph. The final step is to
set o equal to the first element of the variance sequence,

At this point the reset loop returns to the mainstream of the program
by entering the output portion of a cycle. It is here that all the quantities
required at the analog computer are converted to analog form by the D/A con-

verters. The data sent to the analog include pk(O) pZ(O) JZ and JK, Note
that pK(0) is required by the analog computer program, whereas the others
are simply displayed to determine if the algorithm is functioning properly.

Finally the digital program activates the interrupt line and signals the
analog computer and control interface to begin another cycle. As before, the
program now goes into a halted state waiting for the interval T to pass.
Cycling in the reset loop continues until the operator is ready to begin a
search cycle and does so by putting the hybrid system in the search mode.

The search loop.- It is in the search mode that the algorithm seeks an
optimal solution to the control problem implemented. Search mode is selected
by the operator at any time and is considered to begin on the next iteration.

During the first iteration of search mode, the analog computer solves the
system, adjoint and control equations using the p(0) established in the last
cycle through the reset loop. The d1g1ta1 computer then receives the time T
interrupt signal and reads the states xX(T) and P (T) as shown in figure 27.
Once read, the integrators are set back to the initial condition where they
will await the next p(0) generated by the algorithm. The next operation
computes the metric as was done in the reset loop, but this time the Jk s
based on the actual solution of the system equations at time T.

The system mode test is next and results in a branch to that portion of
the program that generates the p(0) based on the adaptive principles dis-
cussed previously. The search begins with a test to determine if the system
is in end-state. Since this is the first time through the search loop, end-
state condition cannot have been established so the program proceeds to the
operation that tests the metric. The purpose of the metric test is to deter-
mine success or failure. However, the conditions of success or failure are
more general than those indicated by equation (11); in the discussion follow-
ing that equation, it was pointed out that the precise statement of the com-
plete set of conditions determining success or failure was a complex Boolean
statement. An equivalent flowgraph of this statement as it was implemented in
the program is shown in figure 28, where n 1is the threshold factor
discussed in equation (16).

Now at this point in the discussion we shall assume that JK  has been
tested according to the flowgraph of figure 28. Furthermore, we will take
the results of the metric test to be a success so that portion of the search
loop can be examlned The first operation updates the memory of the algorithm
by setting p (O), the last successful value of p(0) to p (0), the vector
which gave this success, and similarly by setting the last successful metric
JI to JX. Next a test is made on the metric to see if it meets the require-
ment of a solution, that is, JL < €. Assume for the moment that it does not
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and that the program proceeds out the lower branch of the test. The program

then generates the next try for the adjoint initial conditions on the basis of

the single-step strategy. Following the establishment of pk+1(0) the pro-

gram tests JL to determine if the end-search strategy should be employed by

comparing JL with §. If JL is less, the values of the variance sequenc
(61, . . .,0.) are set for end-search strategy (see discussion on p. 10); if
J? is not 1&ss than 8§, the sequence is unaltered. Then after setting o
to the starting value o; the program execution returns to that part which
is common to all loops, the output portion. The program then starts the nex
iteration exactly as it does in the reset loop.

If the test of the metric had resulted in a failure, then the next step
would be to determine if the initial search strategy or the normal search
strategy should be selected. (See discussion on initial search strategy.)

e

t

If a "first success' has not occurred p(0) will be selected, as shown on the

flowgraph, from a uniform distribution. On the other hand, if a '"first
success' has occurred the normal strategy is selected. In this strategy the
primary goal is to generate a new set of adjoint initial conditions using a
gaussian noise source. However, before the actual generation of pk+1(0),
certain of the algorithm parameters must be examined. These parameters con-
trol the maximum number of iterations at a given o 1level, the changing of
o levels, and whether or not to start the search anew. First, a test is
performed to find out if q consecutive trials have resulted in failures.
If not, ¢ remains fixed and the program executes the jump ahead shown; if
true, o 1is incremented to the next value in the sequence (o7, . . .,OY).
Next is a test to determine if o > o,. If not, a jump ahead is executed.
If it is, then a test is made to determine if the sequence has been gone
through C times. If so, the program will reinitialize itself by entering

the reset loop for a new start. This does not put the hybrid system in reset

state but only restarts the algorithm. If the program did not reinitialize,
then ¢ 1is set to o, to prepare it for another cycle through the sequence

This brings the execution of the program to the generation of the noise

vector £K+1 (where it would have been if there were less than q consecutive

failures or if o was not greater than o,). The distribution of the noise

generator is gaussian with zero mean (see eq. (6)). Finally, the new adjoint

initial conditions pk+1(0) are obtained by adding gk+! to the last set of
adjoint initial conditions pZ(O) that produced a success, and the program
moves to the output section.

The search mode continues reducing the metric by the selection of p(0)
until a value is found which gives a solution to the simulated control
problem. This solution is sensed at the point in the program where J“ is
compared with e. If the test indicates that a solution has been found then
branch to the left is executed where the first operation is to set up the
end-state loop condition. Next, the data representing a solution are logged
on the printer and the new adjoint initial conditions set to the value that
gave the solution. The program then goes to output with the system set to
perform the end-state loop.

End-state loop.- The end-state loop is shown in figure 29 by the line
weight emphasis. In end state the integrators still sequence through their
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initial condition and operate modes just as in the search mode. However, p(0)
remains fixed at that value which produced the solution. In this manner it
is possible to observe the optimal solutions found by the search algorithm on
the CRT display described earlier.

Analog Program, Fixed Time

The analog program for fixed-time problems consists of the implementation
of the state, adjoint and control equations. The text contains specific
examples of nonlinear high-order differential equation sets encountered in a
simulation of this type. As programming such equation sets on the analog com-
puter is quite conventional, program diagrams were not considered essential
to this report. However, one uncommon feature in programming these equations
should be pointed out. Ordinarily, one can make a reasonable estimate of the
range of state variables, and so forth, such that good scaling can be chosen.
For the random-search method, however, the scaling is chosen to allow some
variation from the expected solution. Nevertheless, on a moderate number of
iterations the time histories of the state and adjoint variables will exceed
the voltage range of the analog computer. Hence precaution must be taken for
any saturation that may occur.

Analog Program, Free Time

The analog program of a free-time problem is essentially the same as
that used for a fixed-time problem. There are two exceptions as noted ear-
lier. First, the boundary value metric J(t) must be computed continuously
(as a function of the state variables) throughout the specified time interval
[0,T]. For practical reasons the computation should be done on the analog
machine. In contrast, for the fixed-time problem J(t) is computed (as a
function of the state variables) at a fixed point in time, that is, at t = T,
the end time. This latter computation could and was done efficiently on the
digital computer. Second, as was discussed in a previous part of this report
it is necessary to determine the minimum value of the vector metric J(t)
over the interval [0,T]. The method of implementing this is shown in block
diagram form in figure 30. This circuit computes the variable J(t,) defined
as follows:

J(ty) = min J(1) 0 <1<t
T

where 1, is the value of 1 for which the minimum is attained. The
operation of this circuit can be briefly described as follows: If J(t) is
decreasing and is less than J(ty) (i.e., each component is less), then

J(ty) is tracking or following identically J(t); otherwise, J{tp) remains
constant. In other words, J(t,) remains constant at the least value of J(t)
to date in the continuous computation of J(t). Finally when t = T we can
see that we will have our desired result stored in memory, namely, J(tp)
where

J(tp) = min J(t) 0 <t<T
‘ >tz
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and tp is the value of t at which the minimum is attained. Note that we
do not explicitly use the value of 17, or tp in the iterative scheme. How-
ever, when J(ty) has been successfully reduced to within the e region it
is an easy matter to read out the value of tp (referred to as tpg) which
gave the solution.

Although it would seem that the analog equipment required to track the
necessary signals at the high repetitive frequencies would be a critical
limitation to this approach it was found to work quite well in the satellite
problem discussed in the text.

Digital Flowgraph, Free Time

Figure 31 is a flowgraph for free-time problems and autonomous systems.
It is the same as the flowgraph of figure 25 for the fixed-time problem
except for the following two modifications indicated in figure 31 by shaded
boxes. First, for reasons discussed previously, the computation of the
metric J(t) must be done continuously on the analog machine thereby making
the computation on the digital superfluous. The digital machine simply needs
J(ty) from the analog machine, whereas in the fixed-time case the states
x(T) were read and J(T) computed. These modifications are shown in the
shaded region of the upper portion of figure 31. Second, the shaded region
in the lower portion of this same figure reflect the changes necessary to
ensure that the Hamiltonian be zero. This means computationally that all of
the components of the vector p(0) except one (shown here as p;(0)) are
chosen randomly as before, but the remaining component is determined from an
algebraic equation so that H = 0 as required by the theory. Implementation
for free time in the program does not appreciably affect the time for one
iteration.
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TABLE 1.- COMPARISON OF CONTROL SYSTEMS

B Control system
No control
Optimal proportional control
(no saturation)
Optimal impulse control
Optimal nonlinear control
(with saturation)
Initial alinement

Initial nonalinement

(0,0,1,-10,10,10)

Initial condition

Fuel

(0,0,1,-10,10,10)
(0,0,1,-10,10,10)

(0,0,1,-10,10,10)
(0,1/v/2,1/V2,-10,10,10)

.65
.28

.31
.43
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Figure 1.- Hybrid system block diagram of random search algorithm for
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BOUNDARY COST FUNCTION J

ADJOINT VARIABLE p

Figure 3.- Typical boundary cost function surface.
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Figure 8.- Geometry of orbit-transfer problem.
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Figure 9.- Time history solutions; orbit 2, x(0) at -37°, T = 600 sec.
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Figure 10.- Time history solutions 1; orbit 2, x(0) at -13°, T = 400 sec.
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Figure 11.- Time history solutions 2; orbit 2, x(0) at -13°, T = 400 sec.
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Figure 13.- Time history solutions; orbit 3, x(0) at -60°, T = 1075 sec.
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